Data Fusion-Based Machine Learning Architecture for Intrusion Detection

نویسندگان

چکیده

In recent years, the infrastructure of Wireless Internet Sensor Networks (WIoSNs) has been more complicated owing to developments in internet and devices’ connectivity. To effectively prepare, control, hold optimize wireless sensor networks, a better assessment needs be conducted. The field artificial intelligence made great deal progress with deep learning systems these techniques have used for data analysis. This study investigates methodology Real Time Sequential Deep Extreme Learning Machine (RTS-DELM) implemented Things (IoT) enabled networks detection any intrusion activity. Data fusion is well-known that can beneficial improvement accuracy, as well maximizing lifespan. We also suggested an approach not only makes casting parallel network but render their computations effective. By using methodology, excessive degree reliability minimal error rate activity accomplished. Simulation results show are optimized monitor detect malicious or through this proposed approach. Eventually, threats general outlook explored.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

Machine Learning for Intrusion Detection

Detection of unknown attacks in network traffic is gaining increasing importance as modern attacks are characterized by high variabilities and mutation rates. Traditional signature-based intrusion detection systems (IDS) are not able to detect unknown attacks due to failing availability of appropriate signatures. We present an alternative approach based on machine learning techniques which enab...

متن کامل

A Virtual Machine Introspection Based Architecture for Intrusion Detection

Today’s architectures for intrusion detection force the IDS designer to make a difficult choice. If the IDS resides on the host, it has an excellent view of what is happening in that host’s software, but is highly susceptible to attack. On the other hand, if the IDS resides in the network, it is more resistant to attack, but has a poor view of what is happening inside the host, making it more s...

متن کامل

Intrusion Detection: Supervised Machine Learning

Due to the expansion of high-speed Internet access, the need for secure and reliable networks has become more critical. The sophistication of network attacks, as well as their severity, has also increased recently. As such, more and more organizations are becoming vulnerable to attack. The aim of this research is to classify network attacks using neural networks (NN), which leads to a higher de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers, materials & continua

سال: 2022

ISSN: ['1546-2218', '1546-2226']

DOI: https://doi.org/10.32604/cmc.2022.020173